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ABSTRACT 
 
The primary goal of good project risk management should be to successfully deliver projects 
for the lowest cost at an acceptable level of risk.  This requires the systematic development 
and implementation of a set of Risk Response Actions (RRA) that achieves the lowest total 
project cost for a given probability of success while meeting technical performance and 
schedule.  We refer to this set as the "efficient RRA set".  This work presents a practical and 
mathematically sound approach for determining the efficient RRA set.  It builds on some of 
Markowitz' s portfolio selection principles and introduces several conceptual and modeling 
differences to properly treat project technical risks. The set of RRAs is treated as whole and 
not just individual risks. The efficient RRA set is determined based on "Outcome Cost Vs 
Probability of Success".  The risks and RRAs are characterized using scenarios, decision 
trees, and cumulative probability distributions. The analysis provides information that 
enables decision-makers to select the efficient RRA set that explicitly takes their attitude 
toward project risk into account.  Decision-makers should find it both useful and practical for 
sound decision-making under uncertainty/risk and efficiently optimizing project success.  
The computations are readily performed using commercially available Monte Carlo 
simulation tools.  The approach is detailed using a realistic but simplified case of a project 
with two technical risks. 
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1. INTRODUCTION 
 
In today's highly competitive environment and limited resources, the project manager1 needs 
to (1) cost the proposal low enough to win the project but high enough to ensure that the 
project is a success, and (2) once the project is underway, judiciously manage the technical 
and managerial risks. Project risks can be categorized as technical and managerial [Dillon 
and Paté-Cornell, 2001]. Technical risks are primarily associated with uncertainties in 
technology, performance, design, manufacturing, and integration.  Managerial risks are 
associated with staff and management experience, inadequate schedule and budget, and 
programmatic issues. The unavailability of budget contingencies, when needed, results in 
schedule delays that further increase cost, scope changes, and/or project cancellation.  It is no 
longer sufficient to just manage risk; the successful project manager must manage risk 
efficiently.  Environmental risk management is another distinct element of risk management, 
and it is of critical importance for numerous industrial and R&D projects [INCOSE, 1998: 
Section 4.5.3; Haimes, 1998].  The focus of this paper is on technical risks. 
 
Risk analysis has a long and distinguished history [Bernstein, 1996].  Practitioners are 
beginning to recognize that risk analysis is not making as important a contribution to project 
management as it should because of the shortcomings of some of the more widely advocated 
approaches.  Empirical studies [Shapira, 1995: 51] confirm that technical project managers 
want valid information rather than simplicity when making high-risk decisions. Chapman, 
Ward, and Bennell [2000] observe that decision-makers want "applied models that facilitate 
effective interventions" rather than inadequate theoretical models.  Haymes [1998: 309] 
states:  "One of the most dominant steps in the risk assessment process is the quantification of 
risk, yet the validity of the approach most commonly used to quantify risk - its expected 
value - has received neither the broad professional scrutiny that it deserves nor the hoped-for 
wider mathematical challenges that it mandates." 
 
Numerous generic and statistical cost-risk models have been developed that use contingency 
factors [U.S. Department of Energy, 2000], cost estimating relationships [U.S. Department of 
Defense, 1999], and risk factors using the Analytical Hierarchy Process [Graham and 
Dechoretz, 1995].  These approaches provide a broad rather than detailed view of project 
risks, and consequently they do not provide the technical project manager with adequate 
guidance for planning and managing the risk reduction activities. 
 
The present work focuses on the analysis and management of technical risks and presents an 
approach to balance risk, cost, performance, and schedule through the systematic 
development and implementation of Risk Response Actions (RRA).  The selection of RRAs 
constitutes an important trade-off between how much to invest in the RRAs versus the level 
of risk to be assumed [Hillson, 1999].  The proposed approach provides a mathematically 
sound and practical solution to the following problem:  
 
¾ Determine the set of RRAs that either (1) maximizes the probability of success for a 

given total project cost, or (2) minimizes the total project cost for a given probability of 
success.  

 

                                                           
1  The specific title of this role depends on the organization. 
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The solution that we develop may be thought of as the analog of Markowitz' s "efficient 
frontier" [Markowitz, 1976] for project technical risks.  We refer to it as the "efficient RRA 
set."   It provides a variant of a couple of Markowitz' s "efficient portfolio selection" 
principles [Markowitz, 1976: 3] that we paraphrase as follows:   
 
¾ A good set of RRAs is more than a list of good individual RRAs.  It is a balanced whole, 
providing the project with protections and opportunities with respect to a wide range of 
contingencies.  If the RRA set is efficient, it is impossible to establish a smaller contingency 
without giving up some probability of success.  
 
Markowitz's portfolio selection principles are powerful and they apply to areas beyond 
portfolio selection.  For example, they have recently been extended to petroleum exploration 
and production [Ball and Savage, 1999]. 
 
Computing the efficient RRA requires evaluating discrete combinations of RRAs and 
determining the set that maximizes the probability of success for a given total project cost, or 
equivalently minimizes the total project cost for a given probability of success.  The approach 
and its solution offer the following important benefits for risk management and resource 
allocation:   
1. It links the RRAs to contingency planning and the probability of success.  It can thereby 

be used to determine the lowest contingency cost required as a function of the assumed 
risk level.  

2. It provides detailed information and visibility into the possible outcomes and selection of 
RRAs.  It thereby supports the decision-makers' attitude toward risk and how they make 
real decisions.    

3. It provides a mathematically sound and practical method that meets identified needs of 
decision-makers.  Decision-makers should therefore find it useful. 

 
We have selected to use various existing techniques including Decision Trees (DT), Monte 
Carlo simulation, and cumulative risk profiles to support and enhance the analysis process. 
To be specific:  
1. We characterize risk in term of its cumulative distribution or risk profile.  The proposed 

approach is therefore applicable to non-normal distributions that cannot be completely 
characterized by a mean and variance.   

2. We do not rely on standard decision tree analysis that selects the option with the 
maximum or minimum expected outcome.  The proposed approach thereby avoids the 
"fallacy of the expected value" [Haimes, 1999: 150] or the "flaw of averages" [Savage, 
2000].  

3. We quantify the possible outcomes in terms of monetary value and probability of 
occurrence.  The proposed approach thereby avoids the difficulties associated with 
assessing and dealing with utility functions [Clemen and Reilly, 2001: Chapter 14]. 

4. We use scenarios to elicit the judgment and/or knowledge of experts about the possible 
outcomes and their level of confidence.  The resulting data can be modeled using either 
discrete or continuous probability distributions. 

5. The analysis can be readily implemented using commercial Excel add-ins  (@Risk, 
Crystal Ball, Insight.xla, …)2 and/or more specialized tools (DecisionPro, 
Analytica,…)2. 

 
                                                           
2 This list is intended to be representative and not exhaustive. 
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In this paper we detail the proposed approach for an individual project that contains multiple 
technical risks.  The identified technical risks should be listed as individual risks only if they 
depend on distinct technical factors.  It is therefore proper to model the technical risks as 
independent.  For example, the SuperNova / Acceleration Probe (SNAP) mission [Kujawski, 
2001] requires developing a space-based telescope with several scientific instruments (wide-
field imager, infrared photometer, spectrographs,…). These instruments face different 
technical challenges; the associated technical risks are independent; and the covariance 
between them is negligible.  In Section 4.5, we briefly address the when and how to consider 
correlations between the individual risks. 
 
The content of the paper is as follows.  In the Introduction we presented the rationale behind 
the proposed approach and how we propose to build on and tailor some of Markowitz' s 
portfolio selection principles to apply to the management of project technical risks.  In 
Section 2 we describe the use of scenarios to elicit risk information and risk profiles to 
characterize risk.  In Section 3 we present the modeling and analysis of individual RRAs 
using the approach of Section 2.  In Section 4 we develop a paradigm for determining the 
RRAs that make-up the efficient RRA set.  The concepts of Sections 2, 3, and 4 form the 
basis upon which we select an efficient set of RRAs and determine an optimal total project 
cost contingency.  In Section 5 we extend and apply these ideas to individual projects with 
multiple technical risks.  In Section 6 we discuss the implications of the proposed approach to 
the management of technical risks and the planning and management of cost contingencies.  
In Section 7 we present some concluding comments.  In the appendices we provide some 
additional details on modeling (Appendix A) and the illustrative examples (Appendix B). 
 
 
2. MATHEMATICAL MODELS FOR QUANTIFYING TECHNICAL RISK  
 
2.1.  Characterizing Risk 
 
We characterize risk by the probability and magnitude of the possible outcomes, referred to 
as its risk profile.  We adopt the point of view that risk is too complex a concept to be fully 
captured by a single number [INCOSE, 1998: Section 4.5.3].  A full characterization of 
decision-making under uncertainty/risk requires specifying the following four elements: the 
possible events, their probability of occurrence, the range of impacts or outcomes associated 
with each event, and the conditional probability of each outcome given that the event has 
realized [Chapman and Ward, 1996].  This situation can be modeled in multiple ways, and in 
this work we use the following representations (See Appendix A for details): 
1. Standard DTs using discrete outcomes. 
2. Modified DTs where probability distributions rather than discrete branches are associated 

with the chance nodes.  This provides the capability to model outcomes with continuous 
distributions and avoid bushy trees.  

3. Spreadsheet-like models with explicit mathematical formulas.  This provides a powerful 
technique to deal with complex situations and complements DTs. 

 
 
 
 
 
2.2.  Using Scenarios to Quantify Technical Risk Contributors 
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Scenarios [Chapman and Ward, 1996] provide a convenient technique to elicit the judgment 
of experts about probabilities and consequences of project technical risks.  In the proposed 
method, we explicitly evaluate each risk contributor using three scenarios and a variation of 
the fractile method [Haimes, 1998] as follows:  
1. Optimistic scenario or 20th percentile of outcomes - It represents a credible upside 

scenario with a perceived probability of 20% (one chance in five) that the outcome could 
be better.  

2. Pessimistic scenario or 80th percentile of outcomes - It represents a credible downside 
scenario with a perceived probability of 20% that the outcome could be worse.  

3. Most-likely scenario - It represents the scenario with the highest perceived likelihood of 
happening.  

 
We use the "one chance in five" outcomes because these values are not too extreme and their 
use in place of upper and lower bounds assists the domain expert by raising useful questions 
of what could go wrong with the project baseline.  Different levels of probability could be 
used [Markowitz, 1976: 32].  By specifying three outcomes and associated probabilities, the 
domain experts are able to encode their level of confidence for the possible outcomes. This 
data can be reported either in tabular or graphical form.   
 
 
2.3  Discrete versus Continuous Probability Distributions 
 
Cost and schedule exhibit a continuous range of outcomes.  For this reason and possibly 
greater familiarity, analysts may opt to approximate the scenario data with continuous 
probability distributions.  Depending on the statistical characteristics the analyst wants to 
capture, there is a multitude of ways to approximate a three-point discrete distribution by a 
continuous probability distribution.  Popular parameterizations include the triangular and beta 
distributions [Garvey, 2000].  By explicitly starting with scenarios, the analyst can proceed to 
select the distribution that best characterizes the state of knowledge for the parameter or 
measure under consideration and avoid some of the shortcomings of the standard triangular 
distribution method [Moran, 1999]. 
 
 
3.   MODELING AND ANALYZING INDIVIDUAL RRAS  
 
There are typically many possible RRAs to a particular source of risk [Hall, 1998].  For the 
purpose of this paper, we explicitly consider the following three generic RRAs because they 
adequately categorize the available options with little or no loss of generality: 
1. Accept the risk as is - The project recognizes the existence of the risk but considers it 

acceptable to simply monitor it using the standard approach.  
2. Immediately implement risk reduction action - The project immediately implements 

RRAs such as selecting an alternate design, modifying the scope, switching vendors, 
pursuing parallel paths, etc.  If desired, the project may simultaneously consider several 
of these approaches. 

3. Obtain additional information - The project invests in additional analysis, testing, 
and/or prototyping before implementing costly RRAs.  This approach provides a focus on 
dynamic risk management where effective RRAs are implemented as the situation 
evolves and information is acquired [Neely and de Neufville, 2001].  
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For the purpose of this paper we treat each RRA as a black box with only the inputs and 
outputs specified.  As defined, the three categories of RRAs are mutually exclusive so that 
only one category of RRA is applicable at a given time for a given risk.  But different RRAs 
can be simultaneously implemented for different risks within a project. The above RRA 
categorization can be further refined and readily implemented within the proposed approach.  
The only impact is to give rise to bigger models.   In a given situation some of the RRAs may 
not be feasible because of technical and/or programmatic constraints. The model then 
includes fewer options and the DT reduces accordingly.  Each project needs to develop and 
implement detailed risk mitigation / action plans for all medium and high risks.  We use DTs 
as the framework for systematically developing and modeling the RRAs and associated 
decision process.  But as discussed in Section 4, we do not use the standard DT analysis 
procedure of folding-back and averaging the outcomes for selecting the preferred RRAs.  
 
 
3.1.  The Basic RRA Decision Tree 
 
We illustrate the approach by considering a single technical risk R1 with the above three 
generic RRAs as options.  The resulting generic DT in Figure 1 lays out a simple architecture 
for developing and evaluating the RRAs for each individual risk.  It also provides the basic 
template for dealing with multiple risks, as detailed in Section 5.  Figure 1 follows the 
standard DT convention and the compact notation described in Appendix A.  The three 
branches associated with the initial decision node represent the three RRAs identified above.  
The Obtain_R1_Data RRA sequence includes multiple decision nodes that reflect a staged 
decision situation where the subsequent decisions depend on the acquired information.  The 
above basic DT is generic in character and readily generalizes to include more or fewer RRA 
options with the only impact being a bushier or leaner DT. 
 

Risk R1
RRAs

Accept R1
0

R1a strikes
Probability

Outcomes_1
Distribution

R1a doesn't strike
Probability

Implement RRA1b
Cost_1

R1b strikes

R1b doesn't strike

Get R1 data
Cost_2

Indication positive
Probability

Implement RRA1c
Cost_3

Indication negative Do nothing
0

R1c strikes
0

R1c  doesn't strike

Outcomes_2
Distribution

Outcomes_3
Distribution

Outcomes_4
Distribution

Probability

Probability

Probability

Probability  
 
 
Figure 1.  Basic RRA DT template. 
 
 
3.2.  Quantification of the Basic RRA Decision Tree  
 
To proceed with the assessment of the RRAs, the variables of the RRA DT in Figure 1 need 
to be quantified.  This is a challenging task that requires experience, the ability to make 
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educated guesses, and a healthy dose of common sense. The probabilities and consequences 
associated with the Accept_R1 and Implement_RRA1 options should be directly obtained 
from the domain experts as described in Section 2.   The values for the Get_R1_data RRA 
depend on the diagnostic capabilities of activities such as analysis, testing, and/or prototyping 
which, given finite resources, are not perfect.  There is a tradeoff in deciding how much effort 
to expand on obtaining the additional information.  A lower effort costs less, but it results in 
data that is less discriminating and a higher probability of a "false negative" that may result in 
severe consequences and higher costs later in the project.  The data for the Get_R1_data RRA 
is determined as described in Appendix B.1.2.  
 
 
3.2.1.  Illustrative Example: Project with a single technical risk 
We quantify the RRA DT in Figure 1 to reflect the following properties of realistic RRAs: 
1. There is a cost associated with each RRA. 
2. RRAs may incorporate a number of key decision points for evaluating progress and 

choose the subsequent best action.  The Get_R1_data RRA represents such an option. 
3. Practical RRAs are not 100% effective.  Different outcomes are associated with each 

RRA.  There is a cost associated with each residual risk. 
4. The residual risks are less severe than the initial risks.  The severe outcomes have both 

lower probabilities and consequences. 
 
Figure 2 depicts the resulting mathematical model equivalent to the RRA DT in Figure 1.   
 

R1 RRAs

Accept R1
  = Dpv(30%,R1a yes,70%,R1a no)

R1a yes
= -Dpv(.2,50,.6,30,.2,20)

R1a no
  = 0

Implement RR1a
  = -10+ R1b

R1b
  = Dpv(.2,R1b yes,.8,R1b no)

R1b yes
  = -Dpv(.2,10,.6,5,.2,2)

R1b no
  = 0

Obtain R1 Data
  = -2+Dpv(32.5%,Ind pos,67.5%,Ind neg)

Ind pos
  = Implement RRA1b

Implement RRA1b
  = -10 - Dpv(.2,15,.6,10,.2,8)

Ind neg
  = Dpv(6.7%,R1c yes,93.3%,R1c no)

R1c yes
  = -Dpv(.2,50,.6,30,.2,20)

R1c no
  =0  

 
 
"R1a yes" is abbreviation for "R1a strikes" 
"R1a no" is abbreviation for "R1a doesn't strike" 
 Dpv is the discrete probability distribution defined in Appendix B 
 
Figure 2  Mathematical model for candidate R1 RRAs. 
 
 
For ease of interpretation, each cell is identified with a self-descriptive label3 and its 
mathematical formula. For completeness and assistance to the interested reader, we also 
provide the detailed quantified RRA DT in Appendix B.  The choice of a representation is a 
matter of personal choice.   We use the mathematical representation to emphasize that the 
proposed decision process does not rely on standard DT analysis (See Section 4.4). 
                                                           
3 Some labels have been abbreviated for legibility. 
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We evaluate the mathematical model in Figure 2 using Monte Carlo simulation because of its 
general applicability and convenience.  The risk profiles and cumulative risk profiles for the 
individual RRAs are shown in Figures 3a and 3b, respectively.   
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Figure 3a.  Risk profiles for candidate R1 RRAs. 
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Figure 3b.  Cumulative risk profiles for candidate R1 RRAs. 
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The complementary cumulative probability is the probability of exceeding a given "impact" 
or 1-minus the probability of success4.  Mathematically speaking, Figure 3b plots 1-minus the 
cumulative distribution function [Martz and Waller, 1982].  Given that we are interested in 
real-world projects, it is reasonable to approximate the step-like cumulative risk profile by a 
smooth function.  For example, the curve "mono AR1" in Figure 3b is such an approximation 
to the curve "Accept_R1".  The associated means and standard deviations are compared in 
Figure 4.  The reported results were obtained using Decision Pro.  The Monte Carlo 
simulation converges rapidly within a couple of thousand trials that take only a few seconds 
on a Pentium II PC.   
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Figure 4.  Means and standard deviations for candidate R1 RRAs. 
 
Essentially identical results were obtained using other commercial tools (See Section 1). 
When using the RRA DT model, we individually simulate the subtree associated with each 
RRA.  The selection of a RRA is a deterministic event and only the associated outcomes can 
be realized.  It would therefore be inappropriate to weigh or combine the outcomes of the 
three RRA options since they are mutually exclusive events5.  The simulation of DTs is 
further discussed in Appendix B.1.  Finally, we point out that for this specific example that is 
based on discrete probability distributions, we could also have used the calculus of discrete 
probability distributions [Kaplan, 1981]. 
 
 
4.   DETERMINATION OF THE EFFICIENT RRA SET  
 
The risk profiles in Figure 3a and/or the cumulative risk profiles in Figure 3b provide 
complete information and visibility into the range and probability of the possible outcomes 
for each RRA.  But mathematically assessing such data is quite complex, and it is an active 
research area in many different fields including economics, safety, and psychology 
[Kahneman, Slovic, and Tversky, 1999].  We now examine the applicability of several 
techniques for comparing risks and determining the efficient RRA set.  For illustration 
                                                           
4 This observation was provided by one of the referees. 
5 Rob Suggs (Vanguard Software) provided this insight into the simulation of decision trees. 
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purposes we use the data in Section 3.  There is no loss of generality because the cumulative 
risk profile characterizes risk whether made up of a single risk or a project-wide set of 
multiple risks. 
 
 
4.1.  Comparing Cumulative Risk Profiles 
 
Each cumulative risk profile in Figure 3b provides the probability that the associated RRA 
does not exceed a given cost.  For example, the Get_R1_data RRA has a 63% probability of 
costing $2K or less and only a 0.9 % probability of costing as much as $52K on the high side.  
Such data is very valuable because it provides the project manager with the information 
needed to determine how much contingency should be available for a given confidence level 
or probability of success.  The importance of such information is supported by empirical 
studies [Shapira, 1998] that show that the majority of technical project managers think that 
risk is not adequately characterized by its mean value but that it depends more on the 
magnitude than the probability of the undesirable outcomes. 
 
The three cumulative risk profiles in Figure 3b intersect each other.  Intuitively, this means 
that no RRA  (Accept_R1, Implement_RRA1, or Get_R1_data) is preferred under all 
possible selection criteria. In the language of the field, none of these RRAs exhibits "first 
order stochastic dominance" [Biswas, 1997].  The Implement_RRA1 RRA provides the 
lowest cost approach for achieving a probability of success exceeding 80%. This cost ranges 
from $10K at 80% to $22K for essentially 100% probability of success.  The two other RRA 
options cost more to provide the same probability of success.  The Accept_R1 option 
provides a 70% probability of success for free; but it carries significantly higher risks than 
the other two RRAs.  The Get_R1_data RRA provides a more deliberate approach between 
risk and a competitive project proposal cost. The preferred RRA depends on the decision-
maker's attitude toward risk; but as we demonstrate below there is a preferred solution for 
each decision-maker.   
 
 
4.2.  Developing the Efficient Contingency Frontier 
 
When selecting RRAs from the set of available RRAs there is a subset of RRAs that provides 
a given probability of success for a lowest cost.  This set of RRAs determines the lowest 
contingency necessary to support the acceptable probability of success.  Its composition 
changes with the probability of success. We refer to the resulting set of RRAs as the 
"Efficient RRA Set" (ERRAS) and the associated points as the "Efficient Contingency 
Frontier" (ECF).    
 
In this section, we illustrate the development of the ECF using the illustrative example in 
Section 3.  We plot the outcomes associated with each RRA as points on the "Impact vs. 
Complementary Cumulative Probability" plane.  The ECF is the curve that joins the points 
corresponding to the RRAs that provide the lowest cost impact for a given probability of 
success.  Figure 5 depicts the result.   
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Figure 5.  Determination of the efficient contingency frontier. 
 
The points that lie to the right of the ECF represent RRAs that bear a greater cost impact than 
necessary for a given probability of success.  None of the considered RRAs has a (Impact, 
Probability) represented by a point below the ECF.  More formally, the ECF can be defined 
as the outer envelope of all the cumulative risk profiles (See Figure 14).  To optimize 
winning the project and successfully carrying it out, project managers should specify the risk 
they are willing to take and then use the ECF to determine the contingency they need.  Only 
the options that lie along the ECF need to be given further consideration.  They represent 
Pareto-optimal solutions [Sen and Yang, 1998].  Points off the ECF represent inferior or 
dominated solutions. 
 
 
4.3.  Applicability of Simple Metrics and Other Criteria 
 
Financial stocks can be adequately characterized using a few key statistical parameters such 
as the mean and variance [Markowitz, 1976].  But there are significant differences between 
financial portfolios and technical project risks that may invalidate the use of these two 
parameters for the latter.  Project cost and schedule risk profiles are typically highly skewed 
[Schragenheim and Dettmer, 2001]; applicable statistical data are rarely available; and the 
focus is on the downside of individual projects.  We use the example in Section 3 to illustrate 
the limitations of several simple metrics for applicability to technical risk analysis and 
contingency management.  We also briefly examine how the analysis simplifies when the 
analyst can invoke the Central Limit Theorem [Garvey, 2000]. 
 
 
4.3.1.  Mean and Standard Deviation 
Figure 4 depicts the means (µ) and standard deviations (σ) of the R1 RRAs.  The Accept_R1 
RRA has the smallest mean risk, $9.0K, and the largest standard deviation, $14.6K.  In 
contrast, the Implement_RRA1 RRA has the largest mean risk, $11.0K, and the smallest 
standard deviation, $2.2K.  Most technical project managers would agree that the Accept_R1 
RRA represents a higher risk than the Implement_RRA1 RRA.  This illustrates the fact that 
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the mean or the standard deviation, as stand-alones, are not appropriate measures of risk for 
non-normal distributions.  
 
 
4.3.2. One-Standard-Deviation Value, µ−σ 
4.3.2.1. General Risk Distribution 
For normal distributions the value (µ−σ)  has a cumulative probability Pr(Value <= 
µ − σ) = 16%.   But for skewed distributions this probability needs to be explicitly calculated.   
For example, Figure 3b provides the following values for the R1 RRAs:  
- The Accept_R1 RRA has a 27% probability of a cost greater than $24K, Pr(Impact > 24) 

= 27%. 
- The Implement_RRA1 RRA has a 37% probability of a cost greater than $13K, Pr(Impact 

>13) = 37%.  
- The Get_R1_data RRA has a 31% probability of a cost greater than $21K, Pr(Impact > 

21) = 31%.    
 
The above data do not provide a clear ranking for the three RRAs.  This illustrates the need 
for caution when using the one-standard-deviation value as the decision/selection criterion 
since its use can be dangerous when dealing with skewed distributions.   
 
 
4.3.2.2.  Applicability of the Central Limit Theorem (CLT) 
The CLT [Garvey, 2000: 186] states that "The sum of a large number of independent random 
variables, where each makes a small contribution to the sum and its variance, approaches the 
normal distribution."  When these conditions are satisfied, the total project contingency for 
any probability of success α  is simply given by  
 

      Vα = Σ µi - zα*(Σ σi
2  )1/2   ,  

 
where  the sums range over the risks with means µi and standard deviations σi, and  zα is the 
standardized z-value from the normal distribution table [Shaikh, 1998].  The efficient RRA 
set is then determined by the values of µi and σi.  This suggests that the analysis may simplify 
and be done analytically as the risks increase in number.   However, the validity of invoking 
the CLT depends on the application and caution is required [Buck, 1989: Chapter 5]. 
 
We also see that when the CLT is applicable, the proposed approach reduces to a trade of 
"Expected cost vs. Variance of cost".  This provides a formal link between the proposed 
approach and Markowitz's "Expected return vs. Variance of return" selection principle 
[Markowitz, 1976].  
 
 
4.3.3.  Other Risk Criteria 
Technical project managers who are highly risk-averse tend to focus on worst-case scenarios 
and select the option with the lowest risk at a high confidence level.  The 95th percentile 
values (5% probability of a worse outcome) for the three RRAs in Figure 3b are as follows:  
~ $30K for the Accept_R1 RRA; ~ $15K for the Implement_RRA1 RRA; and ~ $22K for the 
Get_R1_data RRA.  Based on this criterion, the Implement_RRA1 RRA is preferred.  But 
comparing risks using a single point on the cumulative risk profiles is not a robust method 
and does not provide a balanced consideration of all the possible outcomes.   
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Risk aversion may be theoretically modeled using a utility function [Keeney and Raiffa, 
1976]. These functions associate utilities or utiles with monetary values that reflect the 
decision-maker's certainty equivalent based on a "reference gamble or lottery."   Accordingly, 
it is appropriate [Raiffa, 1970: 86] " to associate with each lottery its expected value in these 
new units and to choose the lottery that has the best showing on this new scale of expected 
values."   But, empirical studies indicate that most technical managers are unlikely to use 
such data for decision-making under risk/uncertainty.  To quote [Shapira, 1995: 51]: "Ideally, 
it would be an advantage for managers if risk could be described in one number.  However, 
acknowledging the many facets of risk, most felt that transforming a multidimensional 
phenomenon to one number might not be adequate or helpful."   
 
The Partitioned Multiobjective Risk Method (PMRM) [Haimes, 1998 and 2000; Gonick, 
1996] is an interesting approach proposed for quantifying high consequence accidents.  It 
characterizes risk using multiple conditional expected-value functions each associated with a 
particular range of damage severity.  It thereby avoids decision-making based on the 
expected value. 
 
 
4.4.  Limitations of Standard Decision Tree Analysis 
 
For completeness and clarity, we outline what in this paper we refer to as standard DT 
analysis [Clemen and Reilly, 2001].   It consists of the following steps: 
1. Structure the decision and model it using a DT. 
2. Quantify the outcomes or consequences at the end of the branches.  The values may be 

physical quantities such as monetary values or subjective values based on a utility 
function. 

3. Apply the "folding back the tree" procedure. 
4. Choose the alternative with the highest or lowest expected outcome value. 
 
Much of the valuable information obtained in the first two steps is subsequently lost in the 
subsequent steps.  Since as indicated in the previous section technical managers do not favor 
utility theory or the use of expected value for decision-making under risk/uncertainty 
conditions [Shapira, 1995], we do not use standard DT analysis for determining efficient 
RRAs. 
 
 
4.5.  Covariance and Correlation 
 
The importance of the covariance and correlation among the risk elements depends on the 
application, and it needs to be examined on a case by case basis.  As indicated in Section 1, 
major technical risks within a single project typically depend on different risk factors and 
consequently they can be modeled as independent. Covariances are essential for security 
portfolios because the security returns and risks are strongly influenced by a common factor, 
the state of the economy.   Covariance among the securities can then be related to various 
market indices [Markowitz, 1976: 98; Sharpe, 2000: 177].  For reliability and safety issues, it 
is very important to consider common-cause failures [Kujawski, Jacobs, and Smith, 1987].  
These introduce dependencies between redundant or back-up systems, and the failures of 
these systems can no longer be treated as independent.  Common-cause failures often become 
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major design drivers because they are likely to dominate the low probability, high 
consequence events.  We think that staff and management experience, schedule and budget 
constraints, and programmatic issues may introduce elements analogous to the market indices 
for project risks.  But as already indicated, we categorize these risks as managerial rather than 
technical and outside the scope of the present paper. 
 
When random variables are correlated, it is important to include the correlations in the 
analysis.  This can readily be done within the proposed approach.  The overall concept is not 
changed, but it requires the Monte Carlo simulation to generate correlated random variables 
[Haas, 1999].  This feature is available in some of the commercial software including Excel 
add-ins identified in Section 16.  The challenge is getting valid data or models for the 
correlation factors for input into the analysis.  The importance of the covariances depends on 
the application, and it needs to be examined on a case by case basis. 
 
 
5.  DEALING WITH MULTIPLE RISKS  
 
We now build on the previous sections to deal with projects that face multiple technical risks 
and require the implementation of multiple RRAs.  The objective is to determine the 
combination of RRAs that either (1) maximizes the probability of success for a given total 
project cost, or (2) minimizes the total project cost for a given probability of success.   We 
generalize the concept of the ERRAS to a portfolio of multiple risks and refer to it as the 
Efficient Total Project RRA Set (ETPRRAS).  The ETPRRAS includes multiple RRAs, and 
the Total Project ECF (TPECF) specifies the lowest Total Project Cost Contingency (TPCC) 
for a given probability of success.  Formally, the problem can be stated as follows:  
 
¾ Given a project with multiple technical risks, Ri where (i= 1, …N), and associated RRAs, 

RRAij where (j =1,2,…,N for a given Ri), determine the combination of RRAs, {RRA1j, 
RRA2k,…,RRANl}, that either (1) maximizes the probability of success for a given total 
project cost, or (2) minimizes the total project cost for a given probability of success. 

 
In Section 5.1 we first illustrate the approach for a hypothetical project with two technical 
risks.  We then generalize the procedure to determine the efficient RRA set for projects with 
any number of risks and RRAs. 
 
 
5.1.  Illustrative Example: A Project with Two Technical Risks  
 
Consider a hypothetical project with two technical risks, R1 and R2.  To be more concrete, 
the reader may identify R1 with the technical risks of developing the telescope mirror and R2 
with the technical risks of developing the optical imager for an advanced space-based science 
mission.  Either risk may strike independently and adversely impact the project.  By analogy 
to reliability analysis, each risk represents a single point failure [McCormick, 1981]. We 
model the problem as follows: 
1. Risks R1 and R2 represent independent events and their outcomes do not affect each 

other.  
2. The three generic RRAs defined in Section 3 are feasible options for each risk.  Different 

RRAs may be selected for the individual risks. 
                                                           
6 For example:  @Risk and Crystal Ball. 
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3. The outcome values depend on the joint RRAs. 
4. The R1 data and R2 data are provided in Section 3.2.1 and Appendix B.2, respectively.  
 
Given the above assumptions, there are nine possible Total Project RRAs (TPRRA) given by 
the set of combinations {RRA1i, RRA2j} where i and j = 1, 2, 3 corresponding to the three 
possible individual RRAs (Accept_Ri, Implement_RRAi, Get_Ri_data).  Figure 6 depicts the 
resulting mathematical model.  For convenience, the TPRRAs are denoted by JRk where 
k=1,…,9.  The residual risk associated with each joint RRA is quantitatively given by a 
probability distribution that is the statistical sum of the contributing risk probability 
distributions.  Since the risks are independent, we compute these sums using a Monte Carlo 
simulation that independently samples the individual distributions.   
 

Joint R1.R2 RRAs=(JR1,JR2,JR3,JR4,JR5,JR6,JR7,JR8,JR9)

JR1=Accept_R1+Accept_R2

JR2=Implement_RRA1a+Implement_RRA2a

JR3=Get_R1_Data+Get_R2_Data

JR4=Accept_R1+Implement_RRA2a

JR5=Accept_R1+Get_R2_Data

JR6=Implement_RRA1a+Accept_R2

JR7=Implement_RRA1a+Get_R2_Data

JR8=Get_R1_Data+Accept_R2

JR9=Get_R1_Data+Implement_RRA2a  
  
 :  Pointers to individual RRAs 
 
Figure 6.  Mathematical model for project with two risks. 
 
The techniques of Sections 2, 3 and 4 are directly applicable to the total project risk, as 
summarized below: 
1. Each total project RRA set is characterized in terms a cumulative risk profile and 

associated statistics.   
2. The composition of the efficient total project RRA set varies with the probability of 

success and defines the total project ECF. 
3. The total project ECF determines the lowest total project cost contingency for a given 

probability of success. 
 
Figure 7 depicts the cumulative risk profiles of each of the nine joint RRAs.  Given the space 
limitation and the resulting crowded appearance, it is intended for illustration purposes rather 
than detail.  For convenience, we summarize a few key parameters including the mean, 
standard deviation, and selected outcomes in Table I.    
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Figure 7.  Cumulative risk profiles for project with two risks. 
 
 
Table I.  Summary Statistics for Project with Two Risks 
 
         Cost Risk, $K
   Project RRA*      Probability of Success

Mean Std Dev Min    Max   50% 80% 95%
JR1: AR1.AR2 15.1 16.9 0.0 70.0 8.0 30.1 50.0
JR2: RR1.RR2 15.9 3.3 14.0 34.0 14.0 19.0 24.0
JR3: R1Data.R2Data 14.7 11.7 3.0 73.0 8.0 27.2 33.0
JR4: AR1.R2Data 14.2 16.0 1.0 71.0 6.0 31.0 51.0
JR5: AR1.RR2 14.4 15.9 4.0 64.0 4.0 34.4 54.0
JR6: RR1.AR2 16.6 6.8 10.0 40.0 17.0 19.8 30.0
JR7: RR1.R2data 15.7 4.3 11.0 41.0 16.0 17.6 24.0
JR8: R1Data.AR2 15.7 12.9 2.0 72.0 10.0 27.2 40.0
JR9: R1Data.RR2 15.0 11.3 6.0 66.0 6.0 26.0 31.0

* See Figures 6 and 7  
 
Based on these data, we make the following observations: 
1. No total project RRA set dominates for all possible outcomes.  The composition of the 

efficient total project RRA set varies with the probability of success. 
2. The individual risk ECFs do not add algebraically.  When assessing the impact of a joint 

RRA  (RRAi for Risk #1 and RRAj for Risk #2) one must probabilistically (not 
algebraically) sum the impacts of RRAi and RRAj in order to determine the TPECF.   
This has important implications for project management and establishing the TPCC 
[Kujawski, 2002]. 

3. JR4, {Accept_R1, Implement_RRA2a}, has the lowest mean value ($14.2K) and one of 
the largest standard deviation ($16.0K).  Most project managers would not select it as the 
preferred option. 
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4. JR7, {Implement_RRA1a, Get_R2_data}, dominates for probabilities of success between 
80%  ($17.6K) and 95% ($24K). 

5. JR2, {Implement_RRA1a, Implement_RRA2a} dominates for probabilities of success 
greater than 95% and has an estimated maximum cost of $34.0K. 

6. The cost differentials among the different strategies are significant.  For example, JR7, 
{Implement_RRA1a, Get_R2_data}, provides an 80% probability of success for $17.6K 
while the corresponding cost with JR5, {Accept_R1, Implement_RRA2a}, is $34.4K.  
The cost-benefit of judicious risk management increases with increased probability of 
success.  

7. JR7, {Implement_RRA1, Get_R2_data}, provides an effective hybrid RRA option.  
Successful project managers often favor such options, where additional data is pursued 
for some of the risks.  

 
As an aside, we note that for all of the above RRAs the value given by the sum of the mean 
and standard deviation corresponds to approximately an 80% probability of success. We find 
this somewhat surprising, but it may be another example where the CLT provides a good 
approximation even with a small number of risks.  This is interesting because it suggests that 
the closed form risk value approximation presented in Section 4 may have wider applicability 
than one might expect [Buck, 1989: Chapter 5]. 
 
 
5.2. Workflow for Determining the Efficient RRA Set and Optimal Contingency 
 
Figure 8 depicts the workflow that a project follows to develop its own project-specific RRAs 
in accordance with the approach developed in this paper.   
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Figure 8.  Workflow for determining the efficient RRA set and optimal contingency. 
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The workflow for determining the efficient RRA set and optimal contingency consists of the 
following activities: 
1. Specify the criteria for selecting the RRAs.  These include the acceptable probability of 

success or Total Project Cost (TPC) and Confidence Level (CL). (Activity A0). 
2. Identify, quantify, and prioritize all technical risks. Each risk should depend on distinct 

risk factors (Activities A1 - A3). 
3. Select the significant risks for further analysis. (Activity A4). 
4. Develop, model, and quantify the feasible individual RRAs. (Activities A5 - A6). 
5. Develop, model, and quantify the feasible total project RRA Sets. (Activities A7 - A9). 
6. Determine the efficient total project RRA set, the total project ECF, and the optimal total 

project contingency cost. (Activities A10 - A11). 
 
As discussed in Section 3, some RRAs may not be feasible for a given risk.  For illustration 
purposes we refer to the example in Section 5.1.   If the Get_R2_data RRA were not feasible 
for risk R2 because of schedule constraints, then only six joint RRA options (those that do 
not include the Get_R2_data RRA) would need to be considered and evaluated to determine 
the total project ECF. 
 
 
6.  IMPLICATIONS FOR RISK AND CONTINGENCY MANAGEMENT 
 
This paper addresses the following risk management questions: 
1. How much contingency should be available to ensure the acceptable probability of 

success? 
2. What set or combination of individual RRAs provides the acceptable probability of 

success for the lowest cost? 
3. What are the risk profiles (probability vs. consequence) of the candidate total project 

RRA sets? 
 
The proposed solution has significant implications for efficiently managing project risks and 
cost contingencies: 
1. For every level of risk there is a combination of individual RRAs, the efficient total 

project RRA set, that provides the acceptable probability of success for the lowest cost.  
The composition of this set varies with probability and it defines the ECF or optimal total 
project contingency. 

2. It is important to explicitly consider risk at the project-wide level.  The total project 
efficient RRA set is not simply the combination of the individual efficient RRAs. There 
are other numerous examples in systems engineering where decomposition and 
reconstruction can cause serious problems [Friedman, 1999]. 

3. Selecting the total project efficient RRA set should be the primary objective of risk 
management.  Higher risk should be viewed as a trade-off in trying to achieve a higher 
probability of project win vs. higher profit. 

4. In many situations, the mean and variance do not fully characterize risk and their use may 
in some cases lead to incorrect decisions. Decision-makers need additional data that 
provide greater visibility into the individual and total project risk profiles.   

5. The ability to determine the efficient total project RRA set empowers the decision-maker 
to manage risk and thereby achieve the highest probability of success for a given 
contingency. 
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6. The total project contingency cost should be held centrally and managed at the project-
wide level.  This principle is essential to successfully manage the contingency and should 
be implemented as an integral element of the proposed approach [Kujawski, 2002].  

 
 
7.0 CONCLUDING COMMENTS 
 
The focus of the present work is on the technical risks associated with uncertainties in 
technology, performance, design, manufacturing, and integration.  Effective risk management 
requires that the selection of RRAs be treated as a trade-off between how much to invest in 
risk mitigation versus the level of risk to be assumed, i.e. overall project cost vs. probability 
of success. We have developed a practical and mathematically sound approach for 
developing, selecting, and implementing the set of RRAs that achieves the lowest total 
project cost for a given probability of success.  This set may be viewed as the project 
technical risk analog of Markowitz's efficient frontier for security portfolio, and we refer to it 
as the "efficient RRA set".  It requires the smallest contingency for a given probability of 
success. 
 
The proposed approach uses various existing techniques including decision trees, Monte 
Carlo simulation, and cumulative risk profiles.  But it does not rely on standard decision tree 
analysis and the use of expected value for selecting the efficient RRA set.  Scenarios are used 
to elicit and quantify risk data. Complex situations with both discrete and continuous 
outcomes are conveniently modeled using compact representations.  Correlated risks can be 
modeled using Monte Carlo simulation or other approaches that generate correlated random 
variables. The analysis is readily implemented using commercially available software 
including some Excel add-ins.  The results provide detailed information and visibility that 
decision-makers need and want when they face high-risk decisions.  In conclusion, we have 
developed a practical and mathematically sound approach that addresses the needs of 
technical managers who want valid information rather than simplicity for decision-making 
under uncertainty/risk.  
  
The project manager who properly implements the proposed approach and principles to 
technical risk management is more likely to have a successful project at a lower cost.  The 
challenges to the team are: 
- Think of selecting the total project RRA set as a whole and not simply focus on the 

individual risks per se. 
- Treat risk management as an integral part of project management. 
- Adequately identify and quantify all the risks. 
- Develop and quantify the individual RRA options. 
 
 
 
APPENDIX A: MODELING REPRESENTATIONS AND NOTATION 
 
Figure 9 depicts the modeling representations discussed in Section 2:   
1. Figure 9a.  A simple DT with each branch representing an individual outcome.   There is 

no loss of generality by not considering decision nodes.  
2. Figure 9b.  A probability distribution is associated with each branch in the DT.  In the 

case shown, the single branch with the specified discrete distribution function replaces 
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the top four branches in Figure 9a.  More generally, we use Dpv(P1,V1, P2, V2,…, Pn, Vn) 
to denote the discrete distribution function with n possible outcomes with value Vi and 
probability Pi for outcome i.  This representation readily generalizes to arbitrary 
distributions and provides a framework for modeling outcomes with continuous 
distributions. 

3. Figure 9c. DTs can also be modeled using a standard spreadsheet as shown. The cells in 
Figure 9c contain formulas that are equivalent to the corresponding node and branch in 
the ET in Figures 9a and 9b. Such mathematical models provide a convenient framework 
for dealing with complex trees where the values of branches are defined by probability 
distribution functions.    

 

Event 1 occurs

Very high outcome
Value = -100

High outcome
-60

Medium outcome
-30

Low outcome
-5

Event 1 does not occur
Value = 0

P=
0

.3

P= .1

.2

.4

.3

.7  
 
 
(a) Standard representation                    
 
 

Event 1 occurs
         P = 0.3

Outcomes
Dpv (0.1,-100, 0.2,-60, 0.4,-30, 0.3,-5)

Event 1 does not occur
P= 0.7   Value = 0

 
 
(b) Representation using discrete distribution function 
 
 

outcomes

Medium

= -30

Low

= -5

    Very high

  = -100

     High

= - 60
Event 1 outcomes

Value
= 0

= Dpv({.1, Very high }, {.2, High }, {.4, Medium }, {.3, Low })

Event 1 does not occur
P= 0.7

Event 1 occurs
P= 0.3

 
 
(c) Spreadsheet model 
 
Figure 9.  Example of a probabilistic scenario using different representations. 
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APPENDIX B: ADDITIONAL DATA FOR ILLUSTRATIVE EXAMPLES 
 
B.1.  R1 RRAS 
 
B.1.1 Detailed RRA DT 
Figure 10 depicts the standard DT representation for the R1 RRAs described in Section 3.  
 

R1 RRAs
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Figure 10.  R1 RRAs using standard DT representation.  
 
Decision nodes and chance nodes are depicted as squares and circles, respectively.  The 
branches that originate with decision nodes represent the available RRAs. The branches that 
originate with chance nodes represent the possible probabilistic outcomes.  Each branch has a 
probability and cost value associated it. These values are conditional on the RRA.  To 
differentiate among the three RRAs, we explicitly denote the associated risks as R1a, R1b, 
and R1c.  
 
The probabilities of the outcomes associated with each RRA sum to 1.  This is an important 
check on the validity of any RRA DT model.  The three RRAs are mutually exclusive, and 
each has its own and independent existence.  Decision nodes are deterministic; only one of 
RRAs gets implemented for each risk.  Once a RRA is implemented, only the associated 
outcomes can be realized and the sum of their probabilities must equal 1.  To characterize 
each RRA, the subtree associated with each RRA needs to be analyzed individually.  As it 
should be, the risk profile and cumulative risk profile for each RRA are identical to those 
shown in Figures 3a and 3b, respectively.  
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B.1.2. Quantification of the Get_R1_data RRA 
As indicated in Section 3, the Get_R1_data RRA requires additional analysis beyond 
elicitation of the data from the domain experts. The domain experts normally have 
information on the prior probabilities of R1 and the effectiveness of the proposed testing 
and/or analysis. The information obtained during the risk reduction phase may be erroneous 
and may result in any of four events.  We assume that the following characteristics for both 
the Get_R1_data and Get_R2_data RRAs: 
- Event 1: Given that the risk R1 (R2) is present, there is an 85% probability that the 
additional data detects it. 

- Event 2: Given that the risk R1 (R2) is present, there is a 15% probability that the 
additional data does not detect it, i.e. gives a "false negative" indication. 

- Event 3: Given that the risk R1 (R2) is not present, there is a 10% probability that the 
additional data indicates that the risk is present, i.e. gives a "false positive" indication. 

- Event 4: Given that the risk R1 (R2) is not present, there is a 90% probability that the 
additional data indicates that it is not present.  

 
The above four events for the R1 risk are depicted in Figure 11a.   But these events appear in 
the reverse order of the events in the tree in Figure 10.   In Figure 10 we first collect data and 
then use it to obtain a better estimate of the presence or absence of risk R1.   Bayes' formula  
[Haimes, 1998] enables one to "reverse" the order of information gathering and compute the 
needed conditional probabilities.   For completeness, we illustrate the calculation of the 
lowest branch: 

 
Pr(R1 present | R1 ind. neg) =   Pr(R1 present) * Pr(R1 ind. neg. | R1 present) / Pr( R1 
ind. neg) ,  

where   
Pr(R1 ind. neg) =   Pr(R1 ind. neg. | R1 not present)* Pr(R1 not present) + Pr(R1 ind. 
neg. | R1 present)*P(R1 present).   
 

Substituting the above specified values yields the following data for outcome #3in Figure 
11b: 

P( R1 ind. neg) = 0.9*0.7 + 0.15*0.3 = 67.5%  
P(R1 present | R1 ind. neg)  = (0.3 * 0.15) / 0.675 = 6.7%. 

 
Figure 11b depicts the "reversed event tree" that results from applying the above analysis to 
the event tree in Figure 11a. 
 

R1 prior info

R1 present
R1 ind. positive

R1 indicators negative

R1 not present
R1 indicators positive

R1 indicators negative

30%
85%

15%%

70%
10%

90%  
Figure 11a.  Event tree based on prior information. 
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R1 obtain data
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R1 present                    Outcome #1

R1 not present          Outcome #2

R1 indicators neg.
R1 present Outcome #3

R1 not present          Outcome #4

32.5%
78.5%

21.5%

67.5%
6.7%

93.3%  
 
Figure 11b.  "Reversed" event tree.  
 
 
B.2.  R2 RRAs  
 
We quantify the R2 RRAs in a similar manner.  The resulting data is summarized as follows: 
- Figure 12 depicts the quantified mathematical model  
- Figure 13 compares the means and variances of the three RRAs 
- Figure 14 depicts the cumulative risk profiles and the associated ECF. 
 

R2 RRAs
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RRA2c
     =-Dpv(20%,6,60%,5,20%,4)

R2 ind neg
      =Dpv(20%,R2c yes,80%,R2c no)
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    =-Dpv(20%,20,60%,8,20%,2)

R2c no
     =0  

 
Figure 12.  Quantified mathematical model for R2 RRAs. 
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Figure 13.  Means and standard deviations for R2 RRAs. 
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Figure 14.  Cumulative risk profiles and ECF for R2 RRAs. 
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